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An integral transform which involves the zeroth-order Hankel function of the first kind, HA, 
is commonly encountered in wave analysis and with particular reference to studies of 
underwater sound, seismology, and electromagnetic phenomena. This paper presents new 
methods for the numerical estimation of this transform based on the “dual” procedure con- 
cept. The computation involves two matched algorithms, the first of which provides the lower- 
order components while the second yields intermediate and higher-order estimates of the 
transform. It is shown that a procedure constructed along these lines generates accurate trans- 
form samples and requires a computation time of the order of that of a few fast Fourier trans- 
form operations. c 1986 Academic Press. Inc. 

1. INTRODUCTION 

Considerable progress has been accomplished in the last 20 years with the 
development of fast transform algorithms like the fast Fourier and 
WalshN-Iadamard transforms (respectively designated FFT and FWHT). A number 
of more recent studies are concerned with the calculation of Fourier-Bessel 
(Hankel) transforms defined by 

for k = O,..., N (1) 

where the transform kernel involves the Bessel function Jk with argument cr. Most 
of this work has concentrated on the zeroth-order transform and a variety of 
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me:hods have been proposed. Siegman Cl]? Sheng [3], and Tslman [J] use the 
“Gardner transform” to convert expression (1) into a correlation which is then 
evaluated by performing three FFT operations. Bruno! and Chavel Cd], Cavanagh 
and Cook [S], Nachamkin and Maggiore [6], and Miraglia et al. [7] base rheir 
methods on various series expansions. A linear filtering concept is proposed by 
Johansen and Sorensen [S]~ Oppenheim et al. [9] show that it is possible to 
calculate the kth-order Fourier-Bessel integral by taking the one-dimensicnai. 
Fourier transform of the projection p(s) of the function under transformation crfo 
the real. axis. 

Another related technique exploited independentiy by Candel [IO] invo!ves a 
single one-dimensional Fourier transform followed by repeated summations c,f 
preselected Fourier components. An extension of this technique presented in 
Ref. [l I] allows the determination of the first N Fcurier-Bessel transforms of a 
given function. It involves a basic Fourier transform. repeated se?ection of suitaS?c 
Fourier components, and successive evaluation of Fourier series coefficients. 3% 
separate estimation of even and odd transform sets is considered in Ref. [lZ] and 
an error analysis is performed in Ref. [ 131. The technique proposed in Ref, [IO] is 
accurate but not fully efficient. Considerable improvement of this aspect is obta;ned 
by making use of the “dual” procedure derived in Ref. [Gy. The computation 
involves two matched algorithms. The first derived in Ref. [lo] provides the Ic;:,er- 
order components. i.e., the components corresponding to !o- \v values c~f the m.m- 
form argument. The second algorithm uses asymptotic formulations and :;:.elds 
intermediate and higher-order components. 

Switching from the first to the second algorithm takes place when the results cF 
both are in agreement to a certain acceptable error. The advantage of :he duai 
procedure is that the computational load rests malniy on the asymptotic algorithm 
and as a consequence the number of operations Is of the order of that required by 
three to five FFT. Furthermore this concept may be extended to ot 
is used in the present paper to enhance the computational efficiency. 

The latest addition to the literature dealing with the FourierBessel transform is 
due to Mook [IS]. His method involves an Abel transform evaluated as a con- 
volution fohowed by a Fourier transform. This interesting method is efficient but it 

uire inaccurate in certain cases. 
We consider in this paper a definite integral 

designated as the H&transform of the function f(c) that features the zeroth-order 
Hanke! function of the first kind, HA(z) = J,,(z) + iY,(z). The N&transform (2) GE- 
trasts with the specific Fourier-Bessel transform 
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with respect to the choice of cylinder kernel function and range of interpretation; if 
f(i) has an even symmetry, the proportionality 

F(r) = W,(r) (4) 

obtains in keeping with the relations 

J,(z) = $Hh(z) + Hi(z)], Hi(e’“z) = -HA(z). 

Our motivation in dealing with the HA-transform comes from the fact that this 
integral appears in many wave problems. Standard representations of the Green’s 
function in unbounded or layered domains are based on this integral transform. To 
illustrate this aspect let us consider for a moment some alternative representations 
of the free space Green’s function for the Helmholtz equation, corresponding to a 
source at the origin and the time dependence ePikcr. These representations include 
the explicit version 

G(r) = 
eik(r2 + z2)’ ? 

4n(r’ + z2) 112 

in terms of the cylindrical coordinates r, z and the respective integrals 

(5) 

(6) 

(7) 

(9) 

which differ in the underlying type of modal synthesis (see Felsen and Marcuvitz 
[16] and Aki and Richards [ 171). The pair (6) and (7) feature plane and cylinder 
wave functions with direction of propagation normal to the z-axis; (8) involves 
propagating waveforms along the z-direction and a radial wave function that has a 
propagating or attenuating character depending on the magnitude of the axial wave 
number; and, evidently, (9) is the Fourier-Bessel counterpart of the H&transform 
(7) with the proportionality signalled in (4). 

Although the representation (6) has merits for analytical purposes since the coor- 
dinates X, y, z are separated in a simple fashion, it is not well suited for numerical 
purposes since a double Fourier integral appears therein. 

Now consider the last representation (9). This integral is of the Fourier-Bessel 
transform type. In analytical studies such integrals are usually more diflicult to han- 
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dle than expressions like (7 j because changes of integration path are less easily per- 
formed. From the numerical standpoint direct calculations based on expressions 
like (9) may lead to erroneous results because the transform kernel contains con- 
verging (towards the source) and diverging cylindrical waves. The converging com- 
ponents are not easily discarded in such calculations. 

in contrast expression (7) is more readily manipulated, in particular by deform- 
ing the integration contour in the complex plane and employing saddle point 
asymptotic methods. It is also more amenable to direct numerical calculations of 
radiating fields because converging cylindrical wave components may be avoided. 

The conclusion reached on this simple example actually apphes to more complex 
situations of wave propagation in layered domains. When the radiation conditions 
must be enforced, H&transform representations are most suitable. Such represen- 
tations are particularly useful when the function under transformation is complex 
and has no parity properties (as, for example, a function having poles which do not 
contribute to the far field and must be discardedj. 

Hence, a good algorithm for the calculation of HA-transforms is clearly needed. 
We were unable to find a reference specifically concerned with the estimation of this 
transform but note that simple asymptotic evaluations have been used in the recem 
literature (see, for example, Di Napoli and Deavenport [ 191 j. 

Because the transform kernel contains the HA Hankel function it is oscillatory 
and a straight forward integration based on standard rules is not very appropriate, 
Furthermore a conventional integration method requires a large number of 
calculations (a multiple of NL if there are N data points to define the function 
under transformation and L estimates of the transform to be determined). 

In the present paper we develop an alternative method for the calculation of the 
HA-transform. It uses a dual procedure technique similar to that of Ref. [14]. The 
gain achieved with this method is somewhat comparable to that obtained by 
estimating a Fourier transform with the FFT instead of using a convenrionai 
integrating rule. 

The mathematical background for the two algorithms involved in the procedure 
is given in Section 2. Discrete formulations of the basic expressions are developed in 
Section 3. An error analysis is conducted in Section 4 and some guidelines fear the 
choice of the main parameters of the discrete transform are given Section 5 presents 
results of test calculations. 

2. MATHEMATICAL BACKGROUND 

The H&transform defined in the introduction by expression (2) features the 
zeroth-order Hankel function HA. This function has a branch singularitjl at < = 0. A 
branch cut is conventionally defined along the negative real axis in the complex i- 
plane. 

Since I!$ (;r) decays exponentially when 151 + ~8 and Im(c) > 0 rt is natural (see 
Felsen and Marcuvitz [ 16, pi 4801) to consider that the integration path fo!iows 
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the real axis slightly above the branch cut for Re(c) < 0 and that it coincides with 
the real axis for Re([) > 0. 

Now to construct a dual procedure for the H&transform we have to formulate an 
algorithm for the lower-order transform samples (algorithm L) and another 
algorithm for the higher-order samples (algorithm A). We shall also describe a 
technique for removing singularities from the function under transformation. 

A. Basic Expressions for Algorithm L 

The HA-transform is defined in the introduction by expression (2). In generalf([) 
is a complex function and its transform F(V) is also complex. The transform 
argument r is a positive real number belonging to the open interval 10, + co [. The 
transform kernel contains the zeroth-order Hankel function of the first kind. This 
function may be replaced by the integral expression (see Abramovitz and Stegun 
C181) 

HA(x) = (2/k) jOm exp(i?c cash t) dt. (10) 

Inserting this representation in the definition (2) yields 

F(r) = (2/k) jTIf([) < d[ jom exp(ijl cash I) dt. (11) 

Interchanging the order of integration leads to 

F(r) = (2/k) jox &r cash t) dt (12) 

where 

(13) 

designates the Fourier transform of f(i) [ and v] is the transform argument. 
According to these last expressions the transform F(r) may be obtained by summ- 
ing Fourier components &v]) corresponding to the variable q = r cash t for t 
belonging to the semi-infinite interval [0, + co [. 

Now, expressions (12) and (13) are useful if the infinite integral (12) converges. 
To examine this important issue it is convenient to change the integration variable. 
Thus by letting q = r cash t in expression (12) one obtains 

(14) 
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We now consider the finite integral 

and assume that the Fourier transform 4(q) decays sufficiently rapidly as 4 
increases and is of order q P-X with a > 1 as 9 exceeds qM and tends to infinity 

$(V)<AV ‘1’ f?M. ( I 6 ‘: 

Then. it is a simple matter to show that 

where B is a constant. 
As a consequence G(r, yap) is an asymptotic approximation to F(r) and it tends 

uniformly to F(r) as v,~ tends to infinity. 
Condition (16) is satisfied by a large class of functions and it is not very resttic- 

eive. 
Under this rather weak condition the finite integral (15) may be used to 

approximate the HA-transform. 
In practice it is more convenient to use t as the integration ~ariab?e. 
Then expression (8) becomes 

G(r, qnr) = (2/k) 1: qS(r cash t) dt (18) 

where t,, = coshh’(qMJr). 
The first variant Ll of algorithm L is based on expressions (13) and (IS ), A 

second variant L2 relies on the expressions (13) and (15). However, the integrand 
of (15) is singular. The singularity must be removed and this may be achieved by 
writing 

The last term is integrated at once while the first has a regular integrand if 4(q) is 
continuous and differentiable at II= Y: 
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Expressions (13) and (20) constitute the variant L2 of algorithm L. This variant 
has some merits because it uses directly available Fourier components and thus 
avoids interpolation. On the other hand it requires the evaluation of (q2 - r-2)--112 
and multiplications by this function. Algorithms Ll and L2 are otherwise com- 
parable. 

B. Basic Expressions for Algorithm A 

The determination of the higher-order components of the H&tranform may be 
based on the classical asymptotic expansion of the Hankel function for large 
argument. This technique is well known and it is used, for example, by Di Napoli 
and Deavenport [19]. However, the precision of this approximation is not well 
documented and possible improvement of the first-order approximation based on 
the higher-order terms of the asymptotic expansion has not been investigated (see 
Candel [14] for a study of the last point in the case of the Fourier-Bessel trans- 
form). 

We shall also show that further improvement of accuracy may be obtained by 
removing the singularity of the asymptotic transform. 

The following argument closely follows that of Ref. [14]. 
Now let q,, qz,..., qi,... designate the successive terms of the Hankel function 

asymptotic expansion and let Q,M represent the series obtained by adding the first 
M terms of this expansion. Then 

M 
Q>+,(z)= 1 q/(z) (21) 

j=l 

and 
H;(z) = QM(z) + O( l/z”+ I:‘). c-22) 

Expressions for e(z) may be found in Abramovitz and Stegun [ 181. We shall use 
only the first two terms: 

ql(Z)=(2/lTZ)1’2exp(iZ-ii7C/4j (23) 

qJz) = -(i/8z)(2/nzj1” exp(iz- k/4). (24) 

Higher-order terms may be included with little effort. However the Mth term 
q,&z) behaves like l/i” ~ 1’2 near z = 0 and as M increases this term becomes more 
singular. As a consequence it is not useful to include more than two terms in the 
asymptotic approximation of the Hankel function. Now consider the integral 
approximation obtained by replacing Hh( {r) by Q,(cr) in definition (2 j: 

PI’(r) = ltrn f(i) (i)li’ [II2 exp(i[r - k/4) d[. 
-s (25) 

Clearly, the first-order asymptotic approximation of the HA-transform has the 
form of a Fourier integral and it may be evaluated with the FFT. 
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Next let us consider the second-order approximation c?f the 6-l@-ansform 
obtained by replacing the Hankel function Hh([rj by &([u). This new estimate may 
be obtained simply by adding a correction term to the first-order approximation 

where 

F(2)(r) = F(‘)(r) + &jr) j26) 

i /2 ‘,’ to2 E2(.)= -8r.3/2 - 0 s (-1:2f([) exp(i<r- in!‘4) d;. 7.L - x 
This correction also involves a Fourier integral and it may be calculated with zhe 

FFT. 
Practical applications (see Section 5) indicate that the first-order approximation 

P”(r) rapidly converges towards the exact transform an that the convergence rate 
and accuracy are increased with the second-order correction. In fact the 
approximate kernel K:(<, Y) = Qr([r) < rapidly tends to the exact transform kerrreP 
K([, I.) = [N;(jrj when r is increased. The convergence of K2([, r) = ;Q2([r) is even 
faster. These aspects are illustrated in Ref. [14] in the case of the Fourier- 
transform for the kernel [J,(jr) which corresponds to the real part of the present 
kernel. Similar results are also obtained for the imaginary part. 

C. A Tdwique for Removing a Singularity J>onz the Faction II der Transfomation 

In many circumstances the function under transformation as a singufarity at 
some point of the integration range. 

If this singularity is removed and treated analytically the resulting transform 
estimates may improve drastically. 

To show how this procedure may be used, let us consider the case of a function 
which is discontinuous at the origin. More specifically we assume that f(l) has a 
single jump discontinuity at [ = 0. 

This jump is denoted by 

Wow it is possible to write .f(<) as a sum of a continuous and a discontinuous 
function: 

f(i) =f,(ii +fG(ij. 

The function f,(c) must have the same jump discontinuity as “f(c). it is con- 
venient to choose 

fD([) = [f] exp( -[,!b) for i 3 0 

=o for;<0 

where b is a positive constant. 
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With this decomposition the H&transform is 

F(r) is the sum of the H&transform of the continuous function L.(i) and the HA- 
transform of a decaying exponential. This last term may be determined analytically 
as 

where CI = (1 + b”r2)‘12. 
The same argument may be used to treat singularities located at other points of 

the integration range. 
The technique just described is exploited by Mook [15] in a paper dealing with 

the calculation of the Hankel transform. As indicated by this author the treatment 
is not traditional because the singularity is subtracted out with a windowing 
function (in this case exp(-c/b)). The reason for this treatment and the choice of 
the parameter b are discussed in that reference. 

3. NUMERICAL IMPLEMENTATION 

For practical application it is necessary to derive discrete expressions from the 
various relations given in the previous section. 

Let d[ designate the sampling period and let f(n) represent the discrete sequence 
obtained by sampling the functionf([) at a constant rate: 

P(n) =fWi) n = O,..., P/2 

fC(n - P) 41 n = P/2 + l,..., P - 1. 
w 

The first (P/2 + 1) samples of this sequence correspond to positive values of [ 
while the next (P/2 - 1) samples represent negative values of that argument. 

Now we shall seek estimates of the HA-transform F(V) for a set of discrete values 
of r: 

I’[ = IAr, I = l,...,L. 

It is convenient (but not essential for algorithm L) to relate the sampling periods 
Ai and Ar by A[ Ar = 2rcjN where N is an integer dividing P exactly. The standard 
rule for dual procedures is to set N equal to the number of samples P. 

Now let 

F(f) =F(lA~)/(dc)~, I= I,..., L (31) 



designate a sequence of sampled and scaled H&transform values and let fi!) stand 
for the discrete estimates calculated numerically. 

The input and output sequences are now defined and we may describe the 
various computational schemes. 

We First consider algorithms Ll and L2 for the !ower-order components oi t 
8:,-transform and then algorithms Al and A2 for the higher-order components, and 
iinaliy conclude with the dual procedure. 

A. Algorirhm L1 

The continuous Fourier transform (13) may be evaluated as a discrete transform 
with the FFT algorithm. For this we let 

L(n) =f(n) n, n = cl,..., P!‘2 

=“mn - 0, n = P/2 + I,.... P - 1. 132) 

Then, the discrete Fourier transform off([) C is defined by 

J(k) = c fi(n) ei2rrkn;P, 
n = 0 

k = Cl,..., P - 1. 

The components of this sequence constitute, under certain general conditions, a 
set of estimates of the continuous Fourier transform and it is possible to write 

where the sampling period Aq satisfies the standard rule A( Ay = 2x/P. 
Our next task is to replace the continuous integral (18) by a discrete expressnca. 

Consider a fixed value of 1. The corresponding upper limit of integration is given by 

Now the maximum value of q corresponding to the discrete transform (26) is 
vhlAx = (P/2) Aq so that 

;35 t 

This upper limit exists only if 1 d N/2 and, as a consequence, 6. < N/2. 
The continuous integral (18) may be evaluated with standard integration ru?es. 
To be consistent with the FFT approximation used above it is natural to use the 

simplest schemes like the rectangle, midpoint, or Simpson rules. To be specific let us 
consider the second method. The integration range is split in S equal segments At = 
I,,,/S and the midpoint of each segment is selected 

lj= (j++) At, j = O,...I S - 1. 
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Then a simple approximation of G(r,, qni) is obtained from 

S-l 

G(lAr, qM) = (2/k) At c qi(lAr cash tj). 
j=O 

(36) 

Now the Fourier transforms appearing in this sum must be evaluated in terms of 
the available discrete samples J(k). This requires an interpolation which may be 
performed in various ways. 

It is again consistent to use the simplest schemes like 

(a) nearest-neighbour interpolation, 
(b) linear interpolation, 
(c) cubic Hermite interpolation. 

For simplicity we only describe the first scheme. Now consider the set of real 
numbers 

d(j, I) = I(Ar/Aq) cash tj = I(P/N) cash tj (37) 

and let k(j, I) designate the set of integers obtained from 

k(j, 1) = Int[d(j, I) + t] (38) 

where Int( . ) designates the integer part of its argument. 
Clearly, k(j, I) Aq is the Fourier transform argument closest to Ar cash tj. Then, 

expression (36) may be approximated by 

S-l 

Gz(lAr, YI.M) = Win) At 1 dCW, 1) 41. (39) 
j=O 

Finally we replace the sampled values of the continuous transform of the last 
expression by discrete estimates. This leads to 

S-I 

G3(Zdr, qM) = (2,h) At c &k(j. Z)](Ao2. 
j=O 

(40) 

By scaling this expression by (A[)’ we obtain a sampled and scaled estimate of 
the HA-transform: 

S-1 

&=(I) = G,ilAr, v,~)/(A~)~ = V/in) At c $CQj, 01. 
j=O 

(41) 

The method just described is probably not the most efficient. It has many features 
in common with the Fourier-Bessel transform algorithm proposed in Ref. [lo]. In 
the present case, however, the integration range is variable and the size of the 
elementary segments At and the location of the points tj change with 1. 



Hence, it is necessary to determine At, tj, cash tj, d(j, i), and k(j, I) for each vaiue 
of 1. It is also necessary to form a sum of S selected Fourier components for each 
vaiue of 1. Now recall that algorithm L serves only to calculate a finite number of 
F(i) corresponding to low values of 1. 

The other estimates are obtained with the much more efficient algorithm A. Thus 
the efficiency of algorithm L is not the main issue. 

To allow an easy reference, the various expressions leading to the Hdtransform 
are summarized in Table I. 

Algorith IL2 

The following scheme is based on expressions (13) and (20). The integration 
range TV, ~~AxI now corresponds to the range of Fourier transform indices 
[l(qiiV), P/2]. If this range is divided in S= P/‘/2-P/N intervals then each 

TABLE I 

Expression Leading to the HA-Transform (Algorithm LI J 

I. Let f(i) designate :he function under transformation 

2. Choose the sampiing periods dc and dr to be such that dr dr = 2n:.u 

3. Choose the FFT size P= 2’ (y is an integer) with P > N 

cl. Specify the number L of samples to be determined, 1. < N/2 

5. Select the value of the number of summation segments S; S is typically of the same order as ,s~ 

6. Dehe tke sequence 

h(n) =f(rz Ai) n. n = cl..., Pi? 

I;(n)=f[(n-P)di]ln-P), ii = l-.:2 t l,..., ” - : 

7. Compute the discrete Fourier transform of 6(n) 

P-L 
d(k) = x h(n) exp(&rkn.‘P), 

n = 0 
k = o,.... P - I 

8. Set the value of l= ! 

9. Calculate tsr&.x = cash-‘(N!2!) and dt = thr.kxiS 

10. Define the set of integration pomts 

i,=(j++)3t, for i=O,.,., S-l 

l!. Ojtain the set of indices 

I?. Perform 

k(j,I)=int[l(P/Njcosh(r,)+$] 

S-l 

13. Ifl<L-1 iet i=l+l and return to step9 
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integration segment extends over a single sampling period dq and expression (13) is 
easily approximated with the rectangle rule 

1 
F(Z) = (2/ix) &lP/N) coshh’(N/21) 

s-1 
+ W7c) c { &Nj, 01 - &WV >/4j, 4”’ 

j=l 
(42) 

where 

k( j, 1) = lP/N + j, 

a( j, I) = k( j, f)* - k(0, 1)‘. (43) 

The main advantage of this new formulation is that it does not require an inter- 
polation. The computational complexity is, however, of the same order as that of 
algorithm L 1. 

The expressions leading to the H&transform (algorithm L2) are summarized in 
Table II. 

C. Algorithms Al and A2 

Algorithm Al is based on expression (25). We first define the sequence 

R(n)=T(n) n”‘exp( -h/4), n = O,..., N/2 

=f(n)(N- n)ll* exp(i7t/3), n = N/2 + l,..., N- 1. (44) 

and evaluate the Fourier integral appearing in (25) with the discrete transform 

iv-1 
t+&(k) = 1 h(n) exp(i2nknlN). 

tl=O 
(45) 

The sampled and scaled asymptotic estimates of the H&transform are then given 
by 

P’I(l)=~&$(l), I= l,..., N/2 

For algorithm A2 the transform estimate is obtained by adding a correction g,(r) 
to ?“(I) according to (26) and (27). 

This correction is obtained by defining the new sequence 

C(n) =f(n) n-li2 exp( -iZ/4), n = I,..., N/2 

=f(n)(N- ,)-‘I2 exp(in/4), n = N/2 + l,..., N- 1 (47) 

C(O)= [i(l)+&(N- 1)-J/2 
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TABLE II 

Expressions Leading to the H&Transform (Algorithm L?) 

I. Let .f( [) designate the function under transformation 

2. Choose the FFT size P = 27 (y is an integer) 

3. Choose the sampling periods dc and Ar to be such that Aj 4r = 2njN 

4. Specify the number L of samples to be determined, L < Ni2 

5 Define the sequence 

h(n) =f(n A<) n, I! = cl,..., P2 

I;(n)=f[(n-P)Ai](n-P), n = P/2 + :,.... P - I 

6. Compute the discrete Fourier transform of 6(n) 

P-i 

7. Set i = I 

J(k) = 1 h(n) exp(i2nkniP), 
n = 0 

x = cl,.... P - i 

8. Determine S = P!‘2 - /(P/N) 

9. Calculate 

IC. Calculate 

11. Caldate 

12. Perform 

k(j, I) = I( P/N) + j. j = O..,.. S - I 

r(j. I) = [kij. /)I’- (1P’N)2 

rMAX = cash -‘(N21) 

13. Ifl<L-I let I=/+1 and return tostep 

and taking the discrete Fourier transform of this sequence 

d(k) = C c?(n) exp( i2n,kn/iVf. 
?7=0 

The correction term is then estimated by 

and the second-order asymptotic H&transform is obtained from 

(48) 
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TABLE III 

Expressions Leading to the Asymptotic H&Transform (Algorithm Al ) 

1. Let f(c) designate the function under transformation 

2. Choose the sampling period A< 

3. Select the FFT size N = 27 (y is an integer); if algorithm Al is used in a dual procedure the value of 
N should be the same as that of algorithm L 

4. Define the sequence 

h(n) =f(n A[) n’;* exp( -k/4), n = O,..., N/2 

h(n)=f[(n- N)Ac](N-n)“‘exp(in/4), n = N/2 f I,..., N- 1 

5. Compute the discrete Fourier transform 

N-I 
$(k) = 1 h(n) exp(i2xkrz/N), 

“=O 
k = O,..., N - I 

Determine the asymptotic estimates of the H&transform 

I= I,.... N/2 

Expressions leading to the first-order asymptotic HA-transform (algorithm Al) 
are assembled in Table III for easy reference. 

D. Dual Procedures 

It is now possible to construct various dual procedures by combining algorithm 
Ll or L2 with algorithm Al or A2. These algorithms may be used in conjunction 
with the singularity removal technique of Section 2. In the first step a complete set 
of asymptotic transform estimates is obtained from algorithm Al or A2. Next, 
algorithm L is started and the transform estimates are evaluated in a sequential 
fashion beginning with the I = 1 sample and eventually ending with the I = N/2 sam- 
ple. 

At each step the transform estimates obtained from algorithms L and A are com- 
pared. The difference between these estimates is formed 

E(l) = [I&q,) - &Z)(( 

where p = 1, 2 and the norm JIz(I represents the modulus of z or the sum of the real 
and imaginary parts of z. 

Now this difference is bounded by the sum of the differences between the exact 
transform and its estimates 

E(I) d IIF(l) -P(Z)11 + IliyZ) -F(l,II. (51) 
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The first term corresponds to the error associated with algorithms Al or AZ. This 
term tends to zero as I increases. The second term represents the error associared 
with algorithm L. It is bounded and usually decreases with i. 

When E(I) falls below a certain acceptable value, algorithm L may be stopped acd 
the remaining transform estimates are those determined at the outset with 
algorithm A. 

Another switching criterion is based on the value of the correction term E,(tj (if 
it has been computed). E,(I) is representative of the error associate 
AI. Then if E?(l) becomes less than a certain small value this algorithm has con- 
verged and it is possible to stop algorithm L. 

4. AN ERROR ESTIMATE FOR A LGORITWM L 1 

An error estimate for algorithm Ll may be obtained by following the reasoning 
of Ref. [lo]. 

A tirst error s1 is introduced when the infinite integral (5) is replaced by the 5nite 
integral ( 11 j, If c#( 17 j < Aq pa with ‘2 > 1 as q > 11 M this error is bounded by 

The second error arises from the application of a discrete integration rule to 
expression (18 j. For the rectangle rule the error bound may be deduced from Ref. 
[X]: 

error appears in the interpolation process. If nearest-neighbour inter- 
polation is used d(r cash t) is replaced by (b(~~?,i vhere 11,=&j, Cj & The 
corresponding error is bounded by 

Now qj is the nearest neighbour of r cash ti and consequently /.r cash !‘- .v,i d 
dyi2 and sj is bounded by 
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The last error arises when one replaces the exact Fourier transform components 
d(qj) by discrete estimates (do2 &k(j, /)I. This error is bounded by 

~4 = IGdr, YIM) - G2(r3 v,w)I 

<f At “f ’ Ihi) - (N2 G&W, 011. (56) 
j=O 

The average value of the difference between the continuous and discrete trans- 
forms appears in this bound. Thus the local errors induced by the discrete 
evaluation of the Fourier transform are averaged and the result affects the HA- 
transform estimates. 

The total error associated with algorithm Ll is less than the sum of the four 
previous bounds. The error estimate obtained is certainly coarse but it provides 
guidelines for the choice of parameters P, N, and S. 

Consider the first error source E,. This error diminishes as qMAX increases. Now 
qMAX = (P/2) Aq and because of the compatibility relation Aq A[ = 271/P, V/MAX = 
x/AC. Thus si may be reduced by decreasing the sampling period A[. Now let us 
assume that Ai has been selected so that qMAx is fixed. Then if P is increased, the 
Fourier transform sampling period Av] diminishes according to Aq = 2x/(PA9 and 
as a consequence the interpolation error s3 decreases. 

Reduction of s4 is achieved by increasing the Fourier transform size P and also 
by removing the singularities of the function being transformed. Thus large values 
of P should be used if accuracy is important. The computation time only increases 
like P log, P so that fairly large values of P may be selected and typically P > 1024. 

An interesting feature of algorithm Ll is that the choice of N and L is indepen- 
dent of the value of P under the restrictions that Nd P and L <N/2. For example, 
one may choose P = 4096 to obtain precise estimates and set N = 1024 and L = 128. 
In this case the sampling rate of the N&transform estimates is Ar= 441 and 128 
values are determined. Hence, algorithm Ll is more flexible that the classical FFT. 

Finally consider the error associated with the integration rule. This error is 
proportional to (At)’ and (At)‘= S-Z[coshP’(N/2Z)]2. Then s2 is inversely propor- 
tional to S” and it decreases as I increases. A sufliciently large value of S must be 
used to reduce c2. On the other hand this value should not be too large because the 
number of operations performed to obtain a single transform estimate is a multiple 
of S. Typically S should be greater than or equal to 256. 

5. EXAMPLES OF CALCULATIONS 

We have submitted our algorithms to an extensive series of test calculations. It is 
in fact essential to demonstrate the validity of the proposed numerical methods in 
more than a single case. Indeed an examination of the literature dealing with the 
Fourier-Bessel transform shows that certain techniques which provide precise 
results in certain cases may also generate inaccurate estimates in other situations. 
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FG. 1. Discrete samples of the three functions used to test the H&t;ansform algorithms. (a\ “Som- 
brero” or “jinc” function f(n) = J, (n/M)/(n/M). M= 4. (b) Exponential Function ,fin) = exp( -ri.‘M). 
RI= 10. (c) Sine function f(n) = sine (n/M), M = 10. 

It is not possible to present all the tests performed but we have included results 
for three typical functions: 

S(I) = 0 for i -C 0 in all three cases. It is convenient to express the constant L; in 
terms of the sampling period A(: a = M Ai. Then the sequences obtained by sam- 
pling the previous functions at a constant rate are respectively 

fin) = J,WWl(4~) (5&3! 

f(n) = exp( -n/M) [%b) 

f(n) = sinc(n/M). (Sk) 

Samples of these sequences are displayed in Fig. 1. The real parts of the H& 
transform of these functions may be deduced from Abramovitz and Stegun [lgj or 
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the Bateman manuscript [21] and their sampled and scaled forms have been given 
in Refs. [lo, 111. 

Expressions for the imaginary parts of the H&transforms are available in the 
Bateman manuscript [21]. The sampled and scaled values are respectively given by 

Im[fi((I)] = - (M2/7r) ln( 1 - c -‘), t>1 (594 

Im[P(=(l)]=(2M”/n)[l-aP’In(l+a)~-’]a-” (59b) 

Im[~(=(l)]=(2M2/n)(1-~2)~‘~21n[~~’-(~~2-1)], s’<l 

= (2M2/7r)(i2 - 1))“2 arcsin(t-‘), (>l (59c) 

where 

,y = (1 + i_y2)1!2, s” = 2rtlM/N. 

We have been unable to obtain a simple expression for the first test case in the 
range O<c<l. 

A. Results of Algorithnz L1 

Results obtained from algorithm Ll for the three test functions are displayed in 
Fig. 2. The calculations correspond to P= N = 1024, S = 512. The transform 
estimates are represented by discrete symbols while the exact transforms are dis- 
played as solid lines. The numerical estimates nearly coincide with the exact trans- 
forms in all cases. Weak oscillations may be observed in Fig. 2a near the transform 
discontinuity. This is related to Gibbs phenomenon. A slight offset is made evident 
on Fig. 2b. The estimates in Fig. 2c are extremely accurate while those in Fig. 2d 
also show a slight offset. The strongly singular transform of Figs. 2e and f is well 
evaluated numerically. The low-order estimates oscillate around the exact values 
while the higher-order samples are quite accurate. The general features of this trans- 
form are well retrieved. 

The precision of algorithm Ll may be enhanced in various ways. For example 
consider the results obtained for the test function (c) by doubling the value of P. 
The results obtained for P = N = 2048, S= 512, are displayed in Fig. 3. 
Improvement of the imaginary part shown in Fig. 3b is quite evident. 

Another method, presented in Section 2, consists of removing the singularities of 
the function under transformation. This technique is illustrated in Fig. 4 which dis- 
plays the imaginary part of the &-transform for the test case (b). The offset in Fig. 
2d has completely disappeared in Fig. 4. 

B. Results of Algorithms Al and A2 

Results obtained with algorithm Al are presented in Ref. [14] for the Fourier- 
Bessel transform (the real part of the H&transform iff (0 is real). The estimates tend 
asymptotically towards the exact transform but convergence is achieved for inter- 
mediate values of 5. 
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FIG. 2. H&-transforms of the three test functions plotted in Fig. 1. Tiie exact transforms are represen- 

ted by solid lines. Estimates generated by algorithm Ll appear as discrete symbols. P = N = lL134, 
S = 512. (a, b) Transform of “jinc” function. (c. d) Transform of exponential function. (e, f) Transform 
of sine function. (a), (c), and (e) display the real parts of the transform while (b). (d), and (fj skew ihe 
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FIG. 3. H&transform of the sine function plotted in Fig. lc. The exact transform is represented by 
solid lines. Estimates generated by algorithm Ll appear as discrete symbols. The values of P and N have 
been doubled. P = N = 2048, S = 5 12. (a) Real part. (b) Imaginary part. 
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form is represented by a solid line. Estimates generated by algorithm Ll appear as discrete symbols. The 
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FIG. 6. H&transforms of the “jinc” function plotted in Fig. la. The exact transform is represented by 
solid lines. Estimates generated by algorithm A2 appear as discrete symbols. N= 1024. (a) Real part. 
(b) Imaginary part. 

It is possible to improve this algorithm by applying the singularity removal 
technique of Section 2. Results obtained in this way are displayed in Fig. 5. The 
asymptotic estimates now rapidly converge towards the exact transforms. 

Algorithm A2 also generates improved estimates in all cases. Figure 6 displays 
only the results obtained for the first test function. 

C. Results of a Dual Procedure 

Estimates obtained with a dual procedure based on algorithms Ll and Al in 
conjunction with the singularity removal technique are plotted in Fig. 7. This 
procedure generates accurate estimates. Switching from Ll to Al occurs for 1 5 50 
and calculation is quite fast in all cases. 

In conclusion we note that the various numerical methods proposed in this paper 
provide satisfactory estimates of the H&transform. Dual procedures constructed by 
combining two types of algorithms yield accurate results and require short com- 
putation times. 
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imaginary parts. 
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6. DISCUSSION 

This paper presents various methods for calculating the HA-transform. Two 
algorithms, Ll and L2, provide accurate estimates and may be used indifferently to 
determine the lower-order components of the transform. Two other algorithms, Al 
and A2, based on an asymptotic expansion of the transform kernel provide 
estimates of the higher-order samples. Algorithm A2 is more accurate than Al but 
requires more calculations. Numerical experiments indicate that the combination of 
Ll, Al, and the singularity removal technique gives the same accuracy as the com- 
bination of Ll and A2. 

Another important point is the choice between the H&transform and the 
Fourier-Bessel transform. For even functions some of the Fourier-Bessel transform 
algorithms developed in the recent literature require the smallest number of 
calculations. 

When the function under transformation has no parity properties the HA- 
transform is most suitable. 

The dual procedure developed in this paper is fast when compared to a conven- 
tional integration of the transform. Another advantage of the method is that it 
resembles the fast Fourier transform. Hence it may be used with equal ease and 
requires similar precautions in sampling and windowing. 
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